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Let f be a function in LP(T), 1 ~ p < +"L, or let f be a continuous function on
the torus T if p = + CIJ, and let K n be the nth Fejer kernel. We prove that, although
the sequence {Ilf - K: fll p} is not monotone in general. it still has a monotonicity
property. Namely. if m < n. then Ilf-K: flip ~ (2 +m/nj1o/p-111If - K~fllp' ,1) 1989
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Let I be an integrable function on the torus T (= [ -!, !» and let
Kn = Llil ~n (l-lil/n) exp(2nijo) be the nth Fejer kernel. It is well known
that the convolution K:I is an approximation off In particular, when I is
in LZ(T),

11/-K,~/llz={ L min(lil z/n2, 1) IJUW}I!2,
Iii < + C0

and the sequence { II I - K,~I liz} is monotone decreasing and
limn ~ + C0 III - K,~1111 = O. When I is in U(T) (1 ~ p < + (0) or when I is
continuous on T (p = + (0), it is slill true that lim" ~ + eN III - K: Illp = 0;
however, in some cases the approximation ofI by K:I can be worse than
the approximation of I by K~J, m < n, i.e., the sequence {III - K: III p} is
not always monotone. For example, the following theorem holds.

THEOREM 1. Given e > 0 and m, there exists n > m and a continuous
Iunction I such that

III - K: III."" > (2 - e)III - K~III 00'

Despite this negative result we shall prove that the sequence
{III - K: Illp} still has the monotonicity property expressed by the
following theorem.
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THEOREM 2. For elWY function f in LP(Tl (I ~ p < + ,x;) or continuous
on T (p = + ::fj), and every n > In, we have

It is convenient to prove Theorem 2 first.

Proof of Theorem 2. Note that

(f - K: f)' (j) = rpm.,,(j)(f - K~J)" (J),

where

rpm,,,U) = min if Iii <111,

= lilln if m~ Iii <n,

=1 if n ~ 111.

Also note that the multiplier rpm." is the Fourier transform of the measure

(/:1m,,, = 15 0 - K" + minK""

where 60 denotes the unit mass measure at O. Hence

and since the total variation of the measure rpm,,, is less than 1 + min, the
theorem follows in the cases p = 1 and p = + w. The case p = 2 is an
immediate consequence of the Plancherel formula. and the other cases
easily follow by interpolation. I

Proof of Theorem 1. The idea is that for a fixed m it is possible to

choose n so large that the total variation of the measure ([>m," is greater
than 2 - e. Let g be a continuous piecewise linear function such that

g(x) = 1 if x=O,

= -1 if b ~ [xl ~1,

=1 if ~+6~lxl~!.

where b is a very small positive number. Note that \I gil x = 1 and that g has
mean zero. It is easy to check that if 15 is very small and n is very large, then
(/:I~"" g(O) > 2 - e. Define now f by

l(j) = m/lil g(j)

= g(j)

if 0 < UI < m.

if m~ iii.
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and J(O) arbitrary. Then

and
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I -K";'/= g,

III - K: 11100 = II rp";',n gil 00

~(2-s)llgII00

= (2 - s)111 - K";'/II 00' I

We conclude this note by observing that an analogue of Theorem 1
holds for every family of approximations of the identity formed by
trigonometric polynomials. However, it is not difficult to construct families
of approximations of the identity for which no analogue of Theorem 2 is
true.

Note added in proof Professor L. De Michele has obtained an extension of Theorem 1 to
U(T), l:f;p< +00 and p#2.


